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Abstract: In the paper, the coupled 1D Zakharov Equation (ZE) is considered as the model equation for wave-wave 
interaction in ionic media. A new six point finite difference scheme, which is equivalent to the multi-symplectic integrator, is 
derived for the model equations. The numerical simulations are also presented for the model. 
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1. Introduction: 
Physically, the wave-wave interaction or the wave collisions are 
common phenomena in science and engineering for both solitary 
and non-solitary waves. At the classical level, a set of coupled 
nonlinear wave equations describing the interaction between high-
frequency Langmuir waves and low-frequency ion-acoustic waves 
were firstly derived by Zakharov [1]. Since then, this system has 
been the subject of a large number of studies.  The system can be 
derived from a hydrodynamic description of the plasma [2,3]. 
However, some important effects such as transit-time damping and 
ion nonlinearities, which are also implied by the fact that the 
values used for the ion damping have been anomalously large 
from the point of view of linear ion-acoustic wave dynamics, have 
been ignored in the Zakharov Equation  (ZE). That is to say, the 
ZE is a simplified model of strong Langmuir turbulence. Thus we 
have to generalize the ZE by taking more elements into account. 
Starting from the dynamical plasma equations with the help of 
relaxed Zakharov simplification assumptions, and through taking 
use of the time-averaged two-time-scale two-fluid plasma 
description, the Zakharov Equations are generalized to contain the 
self-generated magnetic field [4]. The ZE are a set of coupled 
equations as mentioned in [5]  
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where E is the envelope of the high-frequency electric field, n is 
the plasma density measured from its equilibrium value. Up to 
now, there are many methods of constructing exact solutions, for 
instance, the inverse scattering transform [6], the Hirota method 
[7], the Backlund method [8], the extended tanh-function method 
[9], the variable separation approach [10], the Adomian methods  
decomposition method [11–13] and several other numerical [14-

16]. However in their numerical simulations, in order to keep the 
accuracy, there are many constraints. In the paper, we discretize 
the system with finite difference schemes to get the numerical 
simulations of the ZE 
2. A difference scheme for ZE system 
Considering the ZE system (1) and taking   

( ) ( ) ( ) ( ), , , , ,E p x t iq x y x t i x yη µ ξ= + = +  

we get   
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Introducing the canonical momenta     

, , ,x x x xp b q a d cµ ζ= = = = , 

( ) ( )2 2, , ,t t x x
e f g p h qµ ξ= = = =  (3) 

The above system can be written in the following form  

( )t x zKz Lz S z+ = ∇      (4) 

Which is a multi-symplectic in nature with the state variables 

  ( ) 1422 ,,,,,,,,,,,,, Rqphgfecdabqpz T
∈= ξµ  

The system is multi-symplectic in the sense that K is a skew-
symmetric matrix representative of the t direction and L is a skew-
symmetric matrix representative of the x direction. S represents a 
Hamiltonian function, then (2) can be transformed in 

( ) ( )

( ) ( )

( ) ( )( )

2 2

2 2

; ;

; , ; ; ;

, ; ;

0 ; 0 ;

t xx t xx

x x x x t

t x x

tt xx tt xxxx xx

q p q p p q p q

p b q a d c e

f p g q h

p q

ξ µ ξ µ

µ ξ µ

ξ

µ µ ξ ξ

− = − + = +

= = = = =

= = =

− − + = − =

 (5) 

and 

———————————————— 
*  Department of Mathematics 
   Government College,  Kota, India 
   arunkr71@gmail.com 
 
1 Department of Mathematics 
   JNV University, Jodhpur, India 

IJSER

http://www.ijser.org/
mailto:arunkr71@gmail.com


International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014                                                             760 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

( ) ( )

( )

( ) ( )2 2

; ;

; 0 ; 0

; ; ;

; ;

t x t x x

x t x x x t x

x x t

t x x

q b q p p a p q p b

q a e d g h f c

d c e

f p g q h

ξ µ ξ µ

µ ξ µ

ξ

− = − + = + =

= − − + = − =

= = =

= = =

 (6) 

So that   
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and the pair of skew symmetric matrix K and L are 
  

K=



















































00000000000000
00000000000000
00000000000000
00000000000000
00000000100000
00000000010000
00000000000000
00000000000000
00001000000000
00000100000000
00000000000000
00000000000000
00000000000001
00000000000010

      

 L=



















































−−−

00000000000000
00000000000000
10000000000000
01000000000000
00000000000000
00000000000000
00000000100000
00000000010000
00000010000000
00110001000000
00000000000010
00000000000001
00000000001000
00000000000100

      

Using midpoint difference scheme to discretize multi-symplectic 
ZE system, we get 
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From (7) and (9), we eliminate b, we get 
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From (8), (10), we eliminate a we get 
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Similarly we eliminate e & d, g & h and c & f. So we can get 
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 Multiply (18) with i and adding (17) we get  
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Multiply (19) with i and adding Eq. (18) then we can get 
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3. Numerical simulation 
 
In order to verify numerically whether the proposed methodology 
leads to higher accuracy, we evaluate the numerical solutions of 
the ZE (1) with initial conditions  
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Fig. 1.(a) The numerical result for 2E  using (22), (b) the exact 

solution for 2E  with the initial condition (18) when the 

parameters p = 0.05, k = 1, β= 1, s = 0.33. 

 
Fig. 1.(a)  The numerical result for η  using (23), (b) the exact 

solution for η  with the initial condition (18) when the parameters 
p = 0.05, k = 1, β = 1, s = 0.33. 
 
4. Conclusions 
 
A finite Difference Scheme is setup to find the solitary wave 
solution of the Zakharov Equations. We took some important 
effects such as transit-time damping and ion nonlinearities into 
account, there still exist stable solitary wave solutions. The 
method presented in this paper is only an initial work, more work 
will be done. It is obvious that the applications of this method to 
other nonlinear imaginary equations can yield more and more 
solitary wave solutions. 
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